Extensions 1→N→G→Q→1 with N=C22 and Q=D4.S3

Direct product G=N×Q with N=C22 and Q=D4.S3
dρLabelID
C22×D4.S396C2^2xD4.S3192,1353

Semidirect products G=N:Q with N=C22 and Q=D4.S3
extensionφ:Q→Aut NdρLabelID
C22⋊(D4.S3) = A4⋊SD16φ: D4.S3/D4S3 ⊆ Aut C22246C2^2:(D4.S3)192,973
C222(D4.S3) = C3⋊C823D4φ: D4.S3/C3⋊C8C2 ⊆ Aut C2296C2^2:2(D4.S3)192,600
C223(D4.S3) = Dic617D4φ: D4.S3/Dic6C2 ⊆ Aut C2296C2^2:3(D4.S3)192,599
C224(D4.S3) = (C3×D4).31D4φ: D4.S3/C3×D4C2 ⊆ Aut C2248C2^2:4(D4.S3)192,777

Non-split extensions G=N.Q with N=C22 and Q=D4.S3
extensionφ:Q→Aut NdρLabelID
C22.1(D4.S3) = C24.41D4φ: D4.S3/C3⋊C8C2 ⊆ Aut C22964C2^2.1(D4.S3)192,126
C22.2(D4.S3) = (C6×D4)⋊C4φ: D4.S3/Dic6C2 ⊆ Aut C2248C2^2.2(D4.S3)192,96
C22.3(D4.S3) = C4⋊D4.S3φ: D4.S3/Dic6C2 ⊆ Aut C2296C2^2.3(D4.S3)192,593
C22.4(D4.S3) = C4⋊Dic3⋊C4φ: D4.S3/C3×D4C2 ⊆ Aut C2248C2^2.4(D4.S3)192,11
C22.5(D4.S3) = C8.Dic6φ: D4.S3/C3×D4C2 ⊆ Aut C22484C2^2.5(D4.S3)192,46
C22.6(D4.S3) = D8.Dic3φ: D4.S3/C3×D4C2 ⊆ Aut C22484C2^2.6(D4.S3)192,122
C22.7(D4.S3) = Q16.Dic3φ: D4.S3/C3×D4C2 ⊆ Aut C22964C2^2.7(D4.S3)192,124
C22.8(D4.S3) = C4⋊C4.231D6φ: D4.S3/C3×D4C2 ⊆ Aut C2296C2^2.8(D4.S3)192,530
C22.9(D4.S3) = C12.C42central extension (φ=1)192C2^2.9(D4.S3)192,88
C22.10(D4.S3) = C2×C12.Q8central extension (φ=1)192C2^2.10(D4.S3)192,522
C22.11(D4.S3) = C2×C6.SD16central extension (φ=1)192C2^2.11(D4.S3)192,528
C22.12(D4.S3) = C2×D4⋊Dic3central extension (φ=1)96C2^2.12(D4.S3)192,773

׿
×
𝔽